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Abstract—In this paper, we propose a novel low-complexity
signal detection technique based on compressed sensing for a full-
duplex generalized spatial modulation (FD-GSM) system, where a
communication node transmits data symbols via some antennas
and receives data symbols via the remaining antennas at the
same time. Thus, each antenna operates as either transmitter
or receiver in each symbol time, which implies FD-GSM can be
implemented with half-duplex antennas. In particular, parallel
orthogonal matching pursuit (POMP) algorithm is exploited as
a sparse signal recovery algorithm for detecting GSM signals.
The self-interference (SI) due to full-duplex operation is assumed
to be completely removed by help of the recently proposed SI
cancellation techniques. The proposed signal detection technique
significantly outperforms the conventional OMP algorithm in
terms of symbol error rate (SER). Interestingly, there exists
an optimal number of active antennas for maximizing effective
throughput.

Index Terms—Full-duplex radio, generalized spatial modula-
tion, sparse signal recovery, compressed sensing, massive MIMO.

I. INTRODUCTION

Full-duplex (FD) communication has been received much
interest in both industry and academia due to its possibility
to achieve double throughput without additional frequency
resources. Recently, the effect of self-interference (SI) from
transmit antennas to receive antennas, the most challenging
technical issue of the FD communication, has been known to
be significantly alleviated with several advanced signal pro-
cessing techniques including [1]. More recently, FD multiple-
input multiple-output (FD-MIMO) systems have been inves-
tigated in [2], [3]. In [2], a FD-MIMO system has been
proposed, where the SI is significantly decreased at antennas
by symmectric antenna spacing techniques, but 4Nt antennas
are required at each node for achieving spatial Nt FD-MIMO
operation. In [3], it was shown that the Nt spatial FD-
MIMO operation can be possible without addtional antennas
and Nt antennas are enough to both transmit and receive
data simultaneously. However, it is worth noting that the
computational complexity scales linearly with the number of
antennas and the complexity issue may be challenging if the
large number of antennas are utilized as in massive MIMO
systems [4], [5].

On the other hand, (generalized) spatial modulation (GSM)
has been proposed as another way of utilizing multiple an-

tennas, coping with demerits of the conventional MIMO tech-
niques [6], [7]. The basic idea of GSM is to activate a subset
of transmit antennas out of all antennas for transmitting data,
and the indices of the activated antennas impliciticitly convey
information in addition to the traditional symbol modulation.
Thus, the total number of transmitting bits is given by

Nb = �log2
(
Nt

nt

)
�+ nt log2�|A|�, (1)

where Nt, nt, and A denote the total number of transmit
antennas, the number of active transmit antennas, and modu-
latino alphabet, respectively. For example, A = {−1,+1} for
BPSK modulation. The GSM matches well with the massive
MIMO technique since it effectively reduces the required
number of RF chains which is known to be the most expensive
component in mobile communication systems. However, the
receiver complexity for estimating the indices of the active
transmit antennas significantly increases as the number of
transmit antennas increases.

There existed an attempt to combine FD operation and the
SM in a 2×2 MIMO system [8], where a single antenna is used
as a transmitter and the other antenna is used as a receiver.
In other words, each antenna operates with half-duplex mode,
i.e., either transmitter or receiver. In this paper, we consider
the FD-GSM system where each node activates nt antennas
to transmit data out of Nt (nt < Nt). Hence, (Nt − nt)
antennas operate with a receiver mode. In particular, we
proposed a low-complexity signal detection technique based
on compressed sensing, called parallel orthogonal matching
pursuit (POMP), to estimate the indices of the active transmit
antennas. Simulation results show that the proposed technique
significantly outperforms the conventional detection technique
in terms of symbol error rate (SER).

II. SYSTEM MODEL

In this paper, we assume that each node is equipped with
the same number of antennas, Nt, and thus the wireless
channel between nodes is modelled as H ∈ CNt×Nt whose
elements are assumed to be an identical and independent
complex Gaussian random variable with zero mean and unit
variance. In addition, quasi-static fading is assumed, i.e.,
channel coefficients are constant during a single GSM symbol



709709

Full-Duplex Generalized Spatial Modulation: A
Compressed Sensing-Based Signal Detection

(Invited Paper)

Bang Chul Jung1, Jeonghong Park1, Tae-Won Ban2, Woongsup Lee2, and Jong Min Kim3

1Department of Electronics Engineering, Chungnam National University, Daejeon, Republic of Korea
2Department of Information and Communication Engineering, Gyeongsang National Univ., Tongyeong, Republic of Korea

3Department of Mathematics and Information Science, Korea Science Academy of KAIST, Busan, Republic of Korea
E-mail: bcjung@cnu.ac.kr, jhpark81.win@gmail.com, twban35@gnu.ac.kr, wslee@gnu.ac.kr, franzkim@gmail.com

Abstract—In this paper, we propose a novel low-complexity
signal detection technique based on compressed sensing for a full-
duplex generalized spatial modulation (FD-GSM) system, where a
communication node transmits data symbols via some antennas
and receives data symbols via the remaining antennas at the
same time. Thus, each antenna operates as either transmitter
or receiver in each symbol time, which implies FD-GSM can be
implemented with half-duplex antennas. In particular, parallel
orthogonal matching pursuit (POMP) algorithm is exploited as
a sparse signal recovery algorithm for detecting GSM signals.
The self-interference (SI) due to full-duplex operation is assumed
to be completely removed by help of the recently proposed SI
cancellation techniques. The proposed signal detection technique
significantly outperforms the conventional OMP algorithm in
terms of symbol error rate (SER). Interestingly, there exists
an optimal number of active antennas for maximizing effective
throughput.

Index Terms—Full-duplex radio, generalized spatial modula-
tion, sparse signal recovery, compressed sensing, massive MIMO.

I. INTRODUCTION

Full-duplex (FD) communication has been received much
interest in both industry and academia due to its possibility
to achieve double throughput without additional frequency
resources. Recently, the effect of self-interference (SI) from
transmit antennas to receive antennas, the most challenging
technical issue of the FD communication, has been known to
be significantly alleviated with several advanced signal pro-
cessing techniques including [1]. More recently, FD multiple-
input multiple-output (FD-MIMO) systems have been inves-
tigated in [2], [3]. In [2], a FD-MIMO system has been
proposed, where the SI is significantly decreased at antennas
by symmectric antenna spacing techniques, but 4Nt antennas
are required at each node for achieving spatial Nt FD-MIMO
operation. In [3], it was shown that the Nt spatial FD-
MIMO operation can be possible without addtional antennas
and Nt antennas are enough to both transmit and receive
data simultaneously. However, it is worth noting that the
computational complexity scales linearly with the number of
antennas and the complexity issue may be challenging if the
large number of antennas are utilized as in massive MIMO
systems [4], [5].

On the other hand, (generalized) spatial modulation (GSM)
has been proposed as another way of utilizing multiple an-

tennas, coping with demerits of the conventional MIMO tech-
niques [6], [7]. The basic idea of GSM is to activate a subset
of transmit antennas out of all antennas for transmitting data,
and the indices of the activated antennas impliciticitly convey
information in addition to the traditional symbol modulation.
Thus, the total number of transmitting bits is given by

Nb = �log2
(
Nt

nt

)
�+ nt log2�|A|�, (1)

where Nt, nt, and A denote the total number of transmit
antennas, the number of active transmit antennas, and modu-
latino alphabet, respectively. For example, A = {−1,+1} for
BPSK modulation. The GSM matches well with the massive
MIMO technique since it effectively reduces the required
number of RF chains which is known to be the most expensive
component in mobile communication systems. However, the
receiver complexity for estimating the indices of the active
transmit antennas significantly increases as the number of
transmit antennas increases.

There existed an attempt to combine FD operation and the
SM in a 2×2 MIMO system [8], where a single antenna is used
as a transmitter and the other antenna is used as a receiver.
In other words, each antenna operates with half-duplex mode,
i.e., either transmitter or receiver. In this paper, we consider
the FD-GSM system where each node activates nt antennas
to transmit data out of Nt (nt < Nt). Hence, (Nt − nt)
antennas operate with a receiver mode. In particular, we
proposed a low-complexity signal detection technique based
on compressed sensing, called parallel orthogonal matching
pursuit (POMP), to estimate the indices of the active transmit
antennas. Simulation results show that the proposed technique
significantly outperforms the conventional detection technique
in terms of symbol error rate (SER).

II. SYSTEM MODEL

In this paper, we assume that each node is equipped with
the same number of antennas, Nt, and thus the wireless
channel between nodes is modelled as H ∈ CNt×Nt whose
elements are assumed to be an identical and independent
complex Gaussian random variable with zero mean and unit
variance. In addition, quasi-static fading is assumed, i.e.,
channel coefficients are constant during a single GSM symbol

...

...

...

1

2

3

Nt

Chain 1
Tx RF

Tx RF
Chainnt

Rx RF

Nt − nt

Chain

Chain 1
Rx RF

Tx

Rx

Node 1

...

...

...

Chain 1
Tx RF

Tx RF
Chainnt

Rx RF

Nt − nt

Chain

Chain 1
Rx RF

Tx

Rx

1

2

3

Nt

Node 2

Active antenna of node 1 Active antenna of node 2Receive antenna

H

GSM 
Modulator

GSM 
Modulator

GSM 
Deoodulator

GSM 
Demodulator

Fig. 1. System model of FD-GSM when nt = 2.

and change independently over GSM symbols. The channel
matrix is assumed to be known to the receiver via reference
signals. Each node employs the GSM for transmission, and
thus it transmits nt symbols from a modulation alphabet A via
nt activated antennas out of Nt antennas. The other Nt − nt

antennas operate as receiver antennas. The SI is assumed to be
perfectly removed at each node. Fig. 1 illustrates FD-MIMO
channel model where GSM is used in each node and nt = 2.
In Fig. 1, the second and the third antennas are activated in
node 1 and transmit data to node 2, and the first and the third
antennas are activated in node 2 and transmit data to node
1. The total number of transmitting bits over the FD-GSM
system is given by

NFD
b = 2

(
�log2

(
Nt

nt

)
�+ nt log2�|A|�

)
, (2)

where double throughput can be achievable if the same signal
detection performance is guaranteed compared with the half-
duplex (HD) GSM system.

Without loss of generality, node 1 is assumed to activate
the first nt antennas to transmit data. Then, the last Nt − nt

antennas of node 1 receive data from node 2. The received
signal vector at node i ∈ {1, 2} from node j ∈ {1, 2} is given
by

yi = Hijxj + zi, (3)

where Hij ∈ C(Nt−nt)×Nt , xj ∈ CNt×1, and zi ∈
C(Nt−nt)×1 denote the wireless channel matrix from all an-
tennas of node j to the (Nt − nt) receive antennas of node
i, transmit symbol vector of node j, and thermal noise vector
at (Nt − nt) receive antennas of node i with zero mean and
the covariance N0INt−nt

, respectively. Note that xj has nt

non-zero elements out of Nt elements.
With the optimal maximum-likelihood detector (MLD) at

node 1, the detection rule is given by

x̂ML
j = argmin

x
‖yi −Hijx‖22, (4)

where the number of candidates for x ∈ CNt×1 is approxi-
mately given by

(
Nt

nt

) · |A|nt . For example, when Nt = 16,
nt = 2, |A| = 4 (QPSK modulation), then NFD

b = 20
but the number of candidates for x is approximately given
by 1920 for each node. Although the the MLD achieves
the optimal performance, it requires tremendous amount of

computations at each node because it searches all possible
candidates and may not be feasible in practical wireless
communication systems. If nt becomes large, then Nb tends
to increase, but the signal detection performance for the GSM
may be deteriorated because the number of receive antennas at
each node decreases. Considering effective throughput that is
defined the number of successfully decoded at receiver, there
may exist the optimal nt for given Nt and A.

III. GSM SIGNAL DETECTION WITH PARALLEL OMP

Compressed sensing has been known as a revolutionary
technique for reconstructing a sparse signal by finding solu-
tions of under-determined linear systems. Orthogonal match-
ing pursuit (OMP) [9] has been known as a representative
greedy algorithm owing to its simplicity and competitive
performance. In this section, we propose a low-complexity
signal detection technique for the FD-GSM system based on
parallel OMP (POMP) algorithm [10] which was proposed to
supplement the conventional OMP algorithm for sparse signal
recovery. In the FD-GSM system, the signal detection problem
is to obtain the transmit signal vector xj of node j from the
received signal vector yi at node i by referring to (3). Recall
that Hij ∈ C(Nt−nt)×nt , and (3) becomes under-determined
linear system. Considering that nt � Nt in general GSM
systems, the transmit signal vector can be regarded as a sparse
signal of which almost elements are zero.

Overall procedure of the proposed signal detection tech-
nique is summarized in Algorithm 1. In the algorithm, HΛm

t
∈

C(Nt−nt)×|Λm
t | denotes a submatrix of Hij that only contains

columns indexed by Λm
t . As explained in Algorithm 1, multi-

ple columns (M ) from the channel matrix Hij are selected in
the first iteration, which have a high correlation value with the
received signal vector yi. Then, conventional OMP processes
are carried out in parallel, on the basis of the selected columns
in the first iteration. The detection performance becomes
improved as M increases, but the computational complexity
increases linearly with M . Note that the proposed signal
detection algorithm has much smaller complexity than the
optimal MLD, even though it has M times higher complexity
than the conventional OMP algorithm.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the signal detection performances of ML,
OMP, and the proposed algorithm are compared in terms of
SER via extensive simulations. We assume that Nt = 8 and
nt = 3. In addition, QPSK modulation is assumed to be
used for symbol modulation, and thus the resultant number
of transmitting bits of FD-GSM system per channel use is
equal to 30 according to (2). As shown in Fig. 2, the proposed
detection technique significantly outperforms the conventional
OMP algorithm. For example, the SER of OMP algorithm
is equal to 0.035, while that of the proposed algorithm with
M = 4 is equal to 0.001, when SNR = 30dB. The SER of the
proposed algorithm has similar slope with that of the optimal
MLD in medium SNR regime, i.e., SNR ∈ [5dB, 10dB]. Both
the proposed algorithm and the conventional OMP algorithm
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Algorithm 1 Proposed signal detection algorithm based
POMP for a FD-GSM system

1: Input:
2: yi: Received signal
3: Hij : Channel matrix
4: hk : k-th column of Hij

5: nt : The number of active antennas
6: M : The number of parallel OMP blocks
7: Initialize:
8: t = 0, rmt = yi, Λ

m
t = ∅,Ω = {1, 2, . . . , Nt},

9: m ∈ {1, 2, . . . ,M}
10: Iteration:
11: for t = 1 to nt do
12: for m = 1 to M do
13: if t == 1 then
14: λ1

t = argmaxi∈Ω

∣∣〈r1t−1,hk/‖hk‖2
〉∣∣2

15: λ2
t = argmaxi∈Ω\{λ1

t}
∣∣〈r2t−1,hk/‖hk‖2

〉∣∣2

16:
...

17: λM
t = argmaxi∈Ω\{λ1

t ,...,λ
M−1
t }

∣∣〈rMt−1,hk/‖hk‖2
〉∣∣2

18: else
19: λm

t = argmaxi∈Ω\{λm
t−1}

∣∣〈rmt−1,hk/‖hk‖2
〉∣∣2

20: end if
21: Λm

t = Λm
t−1 ∪ {λm

t }
22: Pm

t =
{(

HΛm
t

)T
HΛm

t

}−1 (
HΛm

t

)T
23: x̂m

t = Pm
t yi

24: ŷm
t = HΛm

t
x̂m
t

25: rmt = yi − ŷm
t

26: end for
27: end for
28: Decision:
29: m̂ = argmax

m
‖rmnt

‖22
30: x̂POMP

j = Pm̂
nt
yi

has a error floor which is common in low-complexity signal
detection techniques, and channel coding technique may be
combined with the proposed algorithm for achieving better
SER performance.

Fig. 2 shows the effective throughput of the proposed
POMP algorithm, where the effective throughput is defined
as NFD

b (1 − Pe). Pe denotes the SER. The maximum value
of the effective throughput becomes NFD

b and it tends to be
larger as nt becomes large. However, for a given SNR value,
there exists a optimal nt that achieves the maximum effective
throughput due to the corresponding SER. In addition, the
number of receive antennas becomes smaller as nt increases,
and it negatively affects the SER performance. Thus, nt needs
to be carefully chosen.

ACKNOWLEDGEMENT

This work was support by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (MSIP) (NRF-2016R1A2B4014834). This work was

SNR [dB]

0 5 10 15 20 25 30

S
E

R

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N
t
=16, n

t
=3, N

b

FD
=30

ML

OMP

POMP (M=2)

POMP (M=4)

POMP (M=8)

Fig. 2. BER performance of the proposed low-complexity signal detection
algorithm when Nt = 16, nt = 3, |A| = 4 (QPSK modulation).

SNR[dB]
0 5 10 15 20 25 30

E
ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

0

5

10

15

20

25

30

35

40

45

N
t
=16, M=8

n
t
=2 (N

b

FD
=10)

n
t
=3 (N

b

FD
=30)

n
t
=4 (N

b

FD
=36)

n
t
=5 (N

b

FD
=44)

Fig. 3. Effective throughput of the proposed signal detection algorithm for
varying SNR when M = 8, Nt = 16, |A| = 4 (QPSK modulation), and
nt = 2, 3, 4, 5.
also supported by the Korea Science Academy of KAIST with
funds from the Ministry of Science, ICT and Future Planning.

REFERENCES

[1] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in proc. of
ACM SIGCOMM, pp. 375–386, Aug. 2013

[2] E. Aryafar, et al., “MIDU: Enabling MIMO full duplex,” in proc. of ACM
MOBICOM, pp. 257–268, Aug. 2012.

[3] D. Bharadia and S. Katti, “Full duplex MIMO radios,” in proc. of USENIX
Symposium on NSDI, pp. 359–372, Apr. 2014.

[4] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60,
Jan. 2013.

[5] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag., Vol.
52, No. 2, pp. 186-195, Feb. 2014.

[6] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial
modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2241,
July 2008.

[7] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial
modulation,” in Proc. of Asilomar Conference on Signals, Systems, and
Computers, pp. 1498–1502, Nov. 2010

[8] B. Jiao, M. Wen, M. Ma, and H. V. Poor, “Spatial modulated full duplex,”
IEEE Wireless commun. Lett., vol. 3, no. 6, pp. 641–644, Dec. 2014

[9] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Dec. 2007.

[10] S.-W. Park, J. Park, and B. C. Jung, “On the sparse signal recovery with
parallel orthogonal matching pursuit, IEICE Trans. on Fundamentals, vol.
E96-A, no. 12, pp. 2728–2730, Dec. 2013.




